The Group of Signed Quadratic Residues and Applications

نویسندگان

  • Dennis Hofheinz
  • Eike Kiltz
چکیده

We consider the cryptographic group of Signed Quadratic Residues. This group is particularly useful for cryptography since it is a “gap-group,” in which the computational problem (i.e., computing square roots) is as hard as factoring, while the corresponding decisional problem (i.e., recognizing signed quadratic residues) is easy. We are able to show that under the factoring assumption, the Strong Diffie-Hellman assumption over the signed quadratic residues holds. That is, in this group the Diffie-Hellman problem is hard, even in the presence of a Decisional Diffie-Hellman oracle. We demonstrate the usefulness of our results by applying them to the Hybrid ElGamal encryption scheme (aka Diffie-Hellman integrated encryption scheme — DHIES). Concretely, we consider the security of the scheme when instantiated over the group of signed quadratic residues. It is known that, in the random oracle model, the scheme is chosenciphertext (CCA) secure under the Strong Diffie-Hellman assumption and hence, by our results, under the standard factoring assumption. We show that furthermore, in the standard model, Hybrid ElGamal is CCA secure under the higher residuosity assumption, given that the used hash function is four-wise independent. The latter result is obtained using the recent “randomness extraction framework” for hash proof systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of quadratic D-forms to generalized quadratic forms

In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.

متن کامل

Quadratic $alpha$-functional equations

In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.

متن کامل

بررسی باقی مانده قارچ‌کش متالاکسیل در خیار

In this research, the presence of metalaxyl residues was studied in field-grown cucumber. Two different formulations of metalaxyl were used in the experiments. In the first experiment, cucumber plants were sprayed once and repeatedly by Ridomil-MZ 72 WP at 2.5 g/litre. In the second experiment, single and double applications of metalaxyl granule 5G were carried out at 5 g/m2. Leaves and fruits ...

متن کامل

On the real quadratic fields with certain continued fraction expansions and fundamental units

The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element  where $dequiv 2,3( mod  4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and  $n_d$ and $m_d...

متن کامل

A TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD

The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009